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Abstract Clustering ensembles combine multiple partitions of data into a single cluster-
ing solution of better quality. Inspired by the success of supervised bagging and boosting
algorithms, we propose non-adaptive and adaptive resampling schemes for the integration of
multiple independent and dependent clusterings. We investigate the effectiveness of bagging
techniques, comparing the efficacy of sampling with and without replacement, in conjunc-
tion with several consensus algorithms. In our adaptive approach, individual partitions in
the ensemble are sequentially generated by clustering specially selected subsamples of the
given dataset. The sampling probability for each data point dynamically depends on the
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28 B. Minaei-Bidgoli et al.

consistency of its previous assignments in the ensemble. New subsamples are then drawn
to increasingly focus on the problematic regions of the input feature space. A measure of
data point clustering consistency is therefore defined to guide this adaptation. Experimental
results show improved stability and accuracy for clustering structures obtained via bootstrap-
ping, subsampling, and adaptive techniques. A meaningful consensus partition for an entire
set of data points emerges from multiple clusterings of bootstraps and subsamples. Subs-
amples of small size can reduce computational cost and measurement complexity for many
unsupervised data mining tasks with distributed sources of data. This empirical study also
compares the performance of adaptive and non-adaptive clustering ensembles using different
consensus functions on a number of datasets. By focusing attention on the data points with
the least consistent clustering assignments, whether one can better approximate the inter-
cluster boundaries or can at least create diversity in boundaries and this results in improving
clustering accuracy and convergence speed as a function of the number of partitions in the
ensemble. The comparison of adaptive and non-adaptive approaches is a new avenue for
research, and this study helps to pave the way for the useful application of distributed data
mining methods.

Keywords Clustering ensembles · Consensus functions · Distributed data mining ·
Bootstrap · Subsampling · Adaptive clustering

1 Introduction

While some try to better solving of the clustering (Saha and Bandyopadhyay 2009), some
others turn to ensemble methods. Exploratory data analysis and, in particular, data cluster-
ing can significantly benefit from combining multiple data partitions. Clustering ensembles
can offer better solutions in terms of robustness, novelty and stability (Fred and Jain 2002,
2005; Strehl and Ghosh 2003; Topchy et al. 2003). Moreover, their parallelization capabilities
are a natural fit for the demands of distributed data mining. Yet, achieving stability in the
combination of multiple clusterings presents difficulties.

The combination of clusterings is a more challenging task than the combination of super-
vised classifications (Parvin et al. 2008a,b,c,d; Mohammadi et al. 2008). In the absence of
labeled training data, we face a difficult correspondence problem between cluster labels in
different partitions of an ensemble. Generating diversity in base classifier/clustering tech-
niques is the common aspect between supervised and unsupervised combining approaches.
Parvin et al. (2008a) have proposed a new way for generating diversity in classifiers which
is called CCHR. CCHR emphasizes on crucial and boundary points during training phase.
Recent studies (Topchy et al. 2004a) have demonstrated that consensus clustering can be
found outside of voting-type situations using graph-based, statistical or information-theoretic
methods without explicitly solving the label correspondence problem. Other empirical con-
sensus functions were also considered in Dudoit and Fridlyand (2003), Fischer and Buhmann
(2003), Fern and Brodley (2003). However, the problem of consensus clustering is known
to be NP complete (Barthelemy and Leclerc 1995). Evaluation of a clustering algorithm can
be done by matching final outputs of that algorithm and external desired output according to
Tan et al. (2005), Jain and Dubes (1988).

Beside the consensus function, clustering ensembles need a partition generation proce-
dure. Several methods are known to create partitions for clustering ensembles. For example,
one can use:
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Effects of resampling method 29

(1) Different clustering algorithms (Strehl and Ghosh 2003),
(2) Different initializations – parameter values or built-in randomness of a specific clus-

tering algorithm (Fred and Jain 2002, 2005),
(3) Different subsets of features (weak clustering algorithms) (Strehl and Ghosh 2003;

Topchy et al. 2003),
(4) Different subsets of the original data (data resampling) (Strehl and Ghosh 2003; Dudoit

and Fridlyand 2003; Fern and Brodley 2003; Minaei-Bidgoli et al. 2004a).

The focus of this paper is the last method, namely, the combination of clusterings using
random samples of the original data. Conventional data resampling generates ensemble par-
titions independently; the probability of obtaining the ensemble consisting of B partitions
{π1, π2, . . . , πB} of the given data, D, can be factorized as:

p({π1, π2, . . . , πB}|D) =
B∏

t=1

p(πt |D). (1)

Hence, the increased efficacy of an ensemble is mostly attributed to the number of indepen-
dent, yet identically distributed partitions, assuming that a partition of data is treated as a
random variable π . Even when the clusterings are generated sequentially, it is traditionally
done without considering previously produced clusterings:

p(πt |πt−1, πt−2, . . . , π1; D) = p(πt |D). (2)

However, similar to the ensembles of supervised classifiers using boosting algorithms
(Breiman 1998), a more accurate consensus clustering can be obtained if contributing parti-
tions take into account the previously determined solutions. Unfortunately, it is not possible
to mechanically apply the decision fusion algorithms from the supervised (classification) to
the unsupervised (clustering) domain. New objective functions for guiding partition genera-
tion and the subsequent decision integration process are necessary in order to guide further
refinement. Frossyniotis et al. (2004) apply the general principle of boosting to provide a
consistent partitioning of a dataset. At each boosting iteration, a new training set is created
and the final clustering solution is produced by aggregating the multiple clustering results
through a weighted voting.

In this paper, we propose a simple adaptive approach to partition generation that makes
use of clustering history. In clustering, it is assumed that the ground truth in the form of
class labels is not available. Therefore, we need an alternative measure of performance for an
ensemble of partitions, during clustering process. We determine clustering consistency for
data points by evaluating a history of cluster assignments for each data point within the gen-
erated sequence of partitions. Clustering consistency serves for adapting the data sampling
to the current state of an ensemble during partition generation. The goal of adaptation is to
improve confidence in cluster assignments by concentrating sampling distribution on prob-
lematic regions of the feature space. In other words, by focusing attention on the data points
with the least consistent clustering assignments, one can better approximate (indirectly) the
inter-cluster boundaries.

The main contribution of this paper is three-fold:

• To present a detailed taxonomy of clustering ensemble approaches (Sect. 2),
• To contribute to the new field of adaptive partitioning ensembles proposing a simple

adaptive approach for partition generation (Sect. 4),
• And finally to provide a detailed comparison of bootstrap versus subsampling ensemble

generation (Sect. 5).
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30 B. Minaei-Bidgoli et al.

The remainder of the paper is devoted to different consensus functions used in our exper-
iments (Sect. 2), different algorithms for resampling schemes (Sects. 2, 3, 4), addressing the
problems of estimation of clustering consistency for finding a consensus clustering (Sect. 4).
Finally, we evaluate the performance of adaptive clustering ensembles (Sect. 5) on a number
of real-world and artificial datasets in comparison with non-adaptive clustering ensembles of
bootstrap partitions (Dudoit and Fridlyand 2003; Fischer and Buhmann 2003; Minaei-Bidgoli
et al. 2004a; Topchy et al. 2004b).

2 Taxonomy of different clustering ensemble approaches

A growing number of techniques have been applied to clustering ensembles. A co-association
consensus function was introduced for finding a combined partition in Fred and Jain (2002,
2005). The authors further studied combining k-means partitions with random initializations
and a random number of clusters. Topchy et al. proposed new consensus functions related
to intra-class variance criteria as well as the use of weak clustering components (Topchy et
al. 2003, 2004a). Strehl and Ghosh (2003) have made a number of important contributions,
such as their detailed study of hypergraph-based algorithms for finding consensus partitions
as well as their object-distributed and feature-distributed formulations of the problem. They
also examined the combination of partitions with a deterministic overlap of points between
data subsets (non-random).

Resampling methods have been traditionally used to obtain more accurate estimates of
data statistics. Efron generalized the concept of so-called “pseudo-samples” to sampling
with replacement—the bootstrap method (Efron 1979). Resampling methods such as bag-
ging have been successfully applied in the context of supervised learning (Breiman 1996).
Jain and Moreau employed bootstrapping in cluster analysis to estimate the number of clus-
ters in a multi-dimensional dataset as well as for evaluating cluster tendency/validity (Jain
and Moreau 1987). A measure of consistency between two clusters is defined in Levine and
Domany (2001). Data resampling has been used as a tool for estimating the validity of clus-
tering (Dudoit and Fridlyand 2003; Ben-Hur et al. 2002) and its reliability (Roth et al. 2002;
Fischer and Buhmann 2002).

The taxonomy of different consensus functions for clustering combination is shown in
Fig. 1. This taxonomy presents solutions for the generative procedure as well. Details of the
algorithms can be found in the listed references in Table 1.

It is a long-standing goal of clustering research to design scalable and efficient algorithms
for large datasets (Zhang et al. 1996). One solution to the scaling problem is the parallelization
of clustering by sharing processing among different processors (Zhang et al. 2000; Dhillon
and Modha 2000). Recent research in data mining has considered a fusion of the results from
multiple sources of data or from data features obtained in a distributed environment (Park
and Kargupta 2003). Distributed data clustering deals with the combination of partitions
from many data subsets (usually disjoint). The combined final clustering can be constructed
centrally either by combining explicit cluster labels of data points or, implicitly, through the
fusion of cluster prototypes (e.g., centroid-based). We analyze the first approach, namely,
the clustering combination via consensus functions operating on multiple labelings of the
different subsamples of a dataset. This study seeks to answer the question of the optimal size
and granularity of the component partitions.

Here, among the generative mechanisms based on single algorithm, the Different subsets
of objects, especially the resampling method is investigated in detail. Section 3.1 describes
the non-adaptive methods for resampling. Also, the proposed adaptive resampling approach
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Fig. 1 Taxonomy of different approaches to clustering combination, left side: different approaches to obtain
the diversity in clustering; right side: different consensus functions to find the clustering ensembles

is illustrated in Sect. 4. From the right side of Fig. 1, three kinds of consensus functions are
applied in this paper, which are discussed in Sect. 3.2.

3 Non-adaptive sampling scheme

3.1 Non-adaptive resampling algorithms

Bootstrap (sampling with replacement) and subsampling (without replacement) can discern
various statistics from replicate subsets of data while the samples in both cases are indepen-
dent of each other. Our goal is to obtain a reliable clustering with measurable uncertainty
from a set of different k-means partitions. The key idea of the approach is to integrate multiple
partitions produced by clustering of pseudo-samples of a dataset.

Clustering combinations can be formalized as follows. Let D be a dataset of N data points
in d-dimensional space. The input data can be represented as an N×d pattern matrix or N×N
dissimilarity matrix, potentially in a non-metric space. Suppose that X = {X1, . . ., X B} is a
set of B bootstrap samples of size N or subsamples of size S < N . A chosen clustering algo-
rithm is run on each of the samples in X , which results in B partitions � = {π1, π2, . . . , πB}.
Each component partition in � is a set of non-overlapping and exhaustive clusters with

πi =
{

Ci
1, Ci

2, . . . , Ci
K (i)

}
, Xi = Ci

1 ∪ · · · ∪ Ci
K (i),∀πi , where k(i) is the number of

clusters in the i-th partition.
The problem of combining partitions is to find a new partition σ = {C1, . . . , CM } of the

entire dataset D given the partitions in �, such that the data points in any cluster of σ are
more similar to each other than to points in different clusters within σ . We assume that the
number of clusters, M , in the consensus clustering is predefined and can be different from
the number of clusters, k, in the ensemble partitions. In order to find the target partition σ ,
one needs a consensus function utilizing information from the partitions {πi }. Several known
consensus functions (Fred and Jain 2005; Strehl and Ghosh 2003; Topchy et al. 2003) can be
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32 B. Minaei-Bidgoli et al.

Table 1 Different approaches to clustering combination

Generative mechanisms (How to obtain different components?)

1. Apply various clustering algorithms (Strehl and Ghosh 2003)

2. Use a single algorithm

2.1. Different built-in initialization (Topchy et al. 2003; Barthelemy and Leclerc 1995)

2.2. Different parameters (Barthelemy and Leclerc 1995)

2.3. Different subsets of data points

2.3.1. Deterministic subsets (Strehl and Ghosh 2003)

2.3.2. Resampling (Minaei-Bidgoli et al. 2004a,b; Topchy et al. 2004b; Jain and Dubes 1988)

2.3.2.1. Non-Adaptive

2.3.2.1.1. Bootstrap (Sampling with replacement)

2.3.2.1.2. Subsampling (Sampling without replacement)

2.3.2.2. Adaptive scheme (Topchy et al. 2004b; Frossyniotis et al. 2004)

2.4. Projecting data onto different subspaces (Topchy et al. 2003; Fern and Brodley 2003)

2.5. Different subset of features (Strehl and Ghosh 2003)

Consensus functions (How to integrate cluster ensemble?)

1. Using Co-association Matrix (Barthelemy and Leclerc 1995; Minaei-Bidgoli et al. 2004a;
Jain and Dubes 1988)

1.1. Single Link (SL)/ Minimum Spanning Tree (MST)

1.2. Complete Link (CL)

1.3. Average Link (AL)

1.4. Ward, or other similarity based algorithms

2. (Hyper) Graph Partitioning (Strehl and Ghosh 2003)

2.1. Hyper Graph Partition Algorithm (HGPA)

2.2. Meta CLustering Algorithm (MCLA)

2.3. Clustering Similarity Partition Algorithm (CSPA)

3. Information-theoretic methods, e.g. Quadratic Mutual Information (Topchy et al. 2003)

4. Voting Approach (Minaei-Bidgoli et al. 2004a)

5. Mixture Model (Breiman 1998)

6. Generic agglomerative clustering framework, GAC-GEO (Jiamthapthaksin et al. 2010)

employed to map a given set of partitions � = {π1, π2, . . . , πB} to the target partition, σ, in
our study.

3.2 Consensus functions

A consensus function maps a given set of partitions � = {π1, . . . , πB} to a target partition
σ . In this paper we have employed three types of consensus functions:

3.2.1 Co-association based functions

This consensus function operates on the co-association matrix. Similarity between points
(co-association values) can be estimated by the number of clusters shared by two points in
all the partitions of an ensemble.
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Effects of resampling method 33

Table 2 Clustering ensemble,
based on co-association matrix
and using different
similarity-based consensus
functions

Input: D—the input dataset N points

B—number of partitions to be combined

M—number of clusters in the final partition, σ

k—number of clusters in the components of the combination

�—a similarity-based clustering algorithm

for j = 1 to B

Draw a random pseudosample X j

Cluster the sample X j : π(i)← k −means({X j})
Update similarity values (co-association matrix) for all patterns in X j

end

Combine partitions via chosen � : σ ← �(P)

Validate final partition, σ (optional)

return σ // consensus partition

The similarity between two objects, x and y, is defined as follows:

sim(x, y) = 1

B

B∑

i=1

δ (πi (x) , πi (y)) , δ (a, b) =
{

1, if a = b
0, if a �= b

(3)

Similarity between a pair of objects simply counts the number of clusters shared by the
objects in the partitions {π1, . . . , πB}. In this type, similarity-based clustering algorithms are
used as the consensus function, �.

A numerous hierarchical agglomerative algorithms (criteria) can be applied to the
co-association matrix to obtain the final partition, σ, including Single Link (SL), Average
Link (AL) and Complete Link (CL) (Jain and Dubes 1988).

The general pseudocode of these algorithms is shown in Table 2.
There are three main drawbacks to this approach.

• First, it has a quadratic computational complexity in the number of patterns and features
O(k N 2d2) (Duda et al. 2001), where k is the number of clusters, N is the number of data
points, and d is the number of features.

• Second, there are no established guidelines for which clustering algorithm should be
applied, e.g. single linkage or complete linkage.

• Third, an ensemble with a small number of partitions may not provide a reliable estimate
of the co-association values (Topchy et al. 2004a).

3.2.2 Quadratic mutual information algorithm (QMI)

Assuming that the partitions are independent, a consensus function based on k-means cluster-
ing in the space of standardized features can effectively maximize a generalized definition of
mutual information (Topchy et al. 2003) or even each one of other similarities measurements
of partitioning (Pfitzner et al. 2009). The complexity of this consensus function is O(k N B),
where k is the number of clusters, N is the number of items, and B is the number of partitions.
Though the QMI algorithm can be potentially trapped in a local optimum, its relatively low
computational complexity allows the use of multiple restarts in order to choose a quality
consensus solution with minimum intra-cluster variance.
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34 B. Minaei-Bidgoli et al.

3.2.3 Hypergraph partitioning

The clusters could be represented as hyperedges on a graph whose vertices correspond to
the data points to be clustered. The problem of consensus clustering is then reduced to find-
ing the minimum-cut of the resulting hypergraph. The minimum k-cut of this hypergraph
into k components gives the required consensus partition (Strehl and Ghosh 2003). Hyper-
graph algorithms seem to work effectively for approximately balanced clusters. Though
the hypergraph partitioning problem is NP-hard, efficient heuristics to solve the k-way
min-cut partitioning problem are known, i.e. the complexity of CSPA, HGPA and
MCLA is estimated in Strehl and Ghosh (2003) as O(k N 2 B), O(k N B), and O(k2 N B2),
respectively. These hypergraph algorithms are described in Strehl and Ghosh (2003) and their
corresponding source codes are available at http://www.strehl.com. A drawback of hyper-
graph algorithms is that they seem to work the best for nearly balanced clusters (Topchy et
al. 2004a).

The performance of all these consensus methods is empirically analyzed as a function
of two important parameters: the type of sampling process (sample redundancy) and the
granularity of each partition (number of clusters).

4 Adaptive sampling scheme

While there are many ways to construct diverse data partitions for an ensemble, not all of them
easily generalize to adaptive clustering. The adaptive approach (Topchy et al. 2004b) extends
the studies of ensembles whose partitions are generated via data resampling (Dudoit and
Fridlyand 2003; Fischer and Buhmann 2003; Minaei-Bidgoli et al. 2004a,b). Though, intu-
itively, clustering ensembles generated by other methods also can be boosted. The adaptive
partition generation mechanism as discussed by Breiman (1996, 1998) is aimed at reducing
the variance of inter-class decision boundaries. Unlike the regular bootstrap method that
draws subsamples uniformly from a given dataset, adaptive sampling favors points from
regions close to the decision boundaries. At the same time, the points located far from the
boundary regions are sampled less frequently. It is instructive to consider a simple example
that shows the difference between ensembles of bootstrap partitions with and without the
weighted sampling.

Figure 2 shows how different decision boundaries can separate two natural classes depend-
ing on the sampling probabilities. Here we assume that the k-means clustering algorithm is
applied to the subsamples. In this Figure, it is inferred that the clustering boundaries can
gradually inclined to learn boundary datapoints. Maybe we can’t claim that this process bet-
ters performance of clustering algorithm, but we can say that this generates more diverse
partitions during adaptive algorithm than previous non-adaptive algorithms. According to
Frossyniotis et al. (2004), the more diverse the components existing in the ensembles, the
more accurate the ensembles.

4.1 Resampling

Initially, all the data points have the same weights, namely, the sampling probability pi =
1/N , i ∈ [1, . . . , N ]. Clearly, the main contribution to the clustering error is due to the
sampling variation that causes inaccurate inter-cluster boundaries. Solution variance can be
significantly reduced if sampling is increasingly concentrated only on the subset of objects
at iterations t2 > t1 > t0, as demonstrated in Fig. 2.
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Effects of resampling method 35

t0 t1 t2

Fig. 2 Two possible decision boundaries for a 2-cluster data set. Sampling probabilities of data points are
indicated by gray level intensity at different iterations (t0 < t1 < t2) of the adaptive sampling. True compo-
nents in the 2-class mixture are shown as circles and triangles. reduction difference between the two decision
boundaries over the time in the future iterations, results in reduction of their variance

The key issue in the design of the adaptation mechanism is the updating of probabilities.
We have to decide how and which data points should be sampled as we collect more and
more clusterings in the ensemble. A consensus function based on the co-association values
(Fred and Jain 2002, 2005) provides the necessary guidelines for adjustments of sampling
probabilities. Remember that the co-association similarity between two data points, x and y,
is defined as the number of clusters shared by these points in the partitions of an ensemble,
�:

A consensus clustering can be found by using an agglomerative clustering algorithm (e.g.,
single linkage) applied to such a co-association matrix constructed from all the points. The
quality of the consensus solution depends on the accuracy of similarity values as estimated
by the co-association values. The least reliable co-association values come from the points
located in the problematic areas of the feature space. Therefore, our adaptive strategy is
to increase the sampling probability for such points as we proceed with the generation of
different partitions in the ensemble.

4.2 Relabeling

The sampling probability can be adjusted not only by analyzing the co-association matrix,
which is of quadratic complexity O(N 2), but also by applying the less expensive O(B N K +
BK 3) estimation of clustering consistency for the data points, where B is number of those
partitions that need to be combined, K is number of clusters in the partitions of the ensemble
and N is the size of the original data sample. Again, the motivation is that the points with
the least stable cluster assignments, namely those that frequently change the cluster they are
assigned to, require an increased presence in the data subsamples. In this case, a label cor-
respondence problem must be approximately solved to obtain the same labeling of clusters
throughout the ensemble’s partitions. By default, the cluster labels in different partitions are
arbitrary. To make the correspondence problem more tractable, one needs to re-label each
partition in the ensemble using some fixed reference partition. Table 3 illustrates how four
different partitions of twelve points can be re-labeled using the first partition as a reference.

At the (t + 1)-th iteration, when some t different clusterings are already included in the
ensemble, we use the Hungarian algorithm for minimal weight bipartite matching problem
in order to re-label the (t+1)-th partition. Note that the order of the Hungarian algorithm for
re-labeling the (t + 1)-th partition is O(K 3), Where K is number of clusters in the (t + 1)-th
partition of the ensemble. Besides running the Hungarian algorithm for all B partitions plus
the analysis of the mapped results, results in the above time order, O(B N K + BK 3).
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36 B. Minaei-Bidgoli et al.

Table 3 Consistent re-labeling of 4 partitions of 12 objects

π1 π2 π3 π4 π ′1 π ′2 π ′3 π ′4 Consistency

x1 2 B X α 2 1 2 1 0.5

x2 2 A X α 2 2 2 1 0.75

x3 2 A Y β 2 2 1 2 0.75

x4 2 B X β 2 1 2 2 0.75

x5 1 A X β 1 2 2 2 0.75

x6 2 A Y β 2 2 1 2 0.75

x7 2 B X α 2 1 2 1 0.5

x8 1 B Y α 1 1 1 1 1

x9 1 B Y β 1 1 1 2 0.75

x10 1 A Y α 1 2 1 1 0.75

x11 2 B Y α 2 1 1 1 0.75

x12 1 B Y α 1 1 1 1 1

Table 4 An illustrative example of re-labeling difficulty involving five data points and four different cluster-
ings of four bootstrap samples

P1 P2 P3 P4

x1 1 ? 2 3

x2 1 2 3 1

x3 ? 2 ? 2

x4 ? ? 1 ?

x5 2 1 3 1

The numbers represent the labels assigned to the objects and the “?” shows the missing labels of data points
in the bootstrapped samples

There are some problems in relabeling of the resampled data partitions. In all resampling
methods, some of the objects are missed in drawn samples. When one uses co-association
based methods, this poses no difficulty because the co-association values are only updated
for existing objects. However, missing labels can cause a number of problems for other con-
sensus functions. For example, when an object is missing in a bootstrap sample, there will be
no label assigned to it after running the clustering algorithm. Thus, special consideration of
the missing labels is necessary during the process of re-labeling, before running a consensus
function.

We must consider how to re-label two bootstrap samples with missing values. When the
number of objects in the drawn samples is too small, this problem becomes harder. For
example, consider four partitions, P1, . . . , P4 for five data points x1, . . . , x5 as shown in
Table 4.

One can re-label the above partitions in relation to some reference partition. However, the
missing labels should not be considered in the re-labeling process. Therefore, if the reference
partition is P1, and we want to re-label P2, then only the data points x2 and x5 participate in
the re-labeling process. Similarly, if P3 is re-labeled based on the reference P1, then x1, x2

and x5 are used in the Hungarian algorithm to find the best match. Once the best agreement
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Effects of resampling method 37

among the given labels is found then all the objects in the partition, except those with missing
labels, are re-labeled.

4.3 Consistency index

As an outcome of the re-labeling procedure, we can compute the consistency index of cluster-
ing for each data point. Clustering consistency index CI at iteration t for a point x is defined
as the ratio of the maximal number of times the object is assigned in a certain cluster to the
total number of partitions:

C I (x) = 1

B
max

{
B∑

i=1

δ(π ′i (x), L)

}

[L∈cluster_labels]

(4)

The values of consistency indices are shown in Table 3 after four partitions were generated
and re-labeled. We should note that clustering of subsamples of the dataset, D, does not
provide the labels for the objects missing (not drawn) in some subsamples. In this situation,
the summation in Eq. (5) skips the terms containing the missing labels.

The clustering consistency index of a point can be directly used to compute its sampling
probability. In particular, the probability value is adjusted at each iteration as follows:

pt+1(x) = Z(αpt (x)+ 1− C I (x)), (5)

where α is a discount constant for the current sampling probability and Z is a normalization
factor. Empirically, the discount constant was set to α = 0.3 in our experiments.

At each iteration, the coassociation matrix is updated. The results of relations between
points from all B partitions are accumulated in the final coassociation matrix. As the sam-
pling is focused on the problematic areas of the data, more important information is stored in
this matrix rather than the coassociation matrix obtained from the non-adaptive approaches.
The proposed clustering ensemble algorithm is summarized in pseudocode in Table 5.

5 Experimental study and discussion

The experiments were performed on several datasets, including two challenging artificial
problem, the “Halfrings” dataset, and the “2-Spiral” dataset, two datasets from UCI reposi-
tory, the “Iris” and “Wine” and two other real world dataset, the “LON” and “Star/Galaxy”
datasets. A summary of dataset characteristics is shown in Table 6.

5.1 Datasets

The Halfrings and 2-Spiral datasets, as shown in Fig. 3, consist of two clusters, an unbalanced
clusters with 100- and 300-point patterns in the Halfrings dataset and a balanced clusters in
the 2-Spiral. The k-means algorithm by itself is not able to detect the two natural clusters
since it implicitly assumes them as hyperspherical clusters. 3-Gaussian is a simulated dataset
which includes three unbalanced classes with 50, 100, and 150 data points. The Wine dataset
described in Aeberhard et al. (1992) contains special features of the chemical composition
of wines grown in the same region but derived from three different cultivars. The patterns
are described by the quantities of thirteen constituents (features) found in each of the three
types of wines. There are 178 samples in total.
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Table 5 Algorithms for adaptive
clustering ensembles

Input: D—dataset of N points

B—number of partitions to be combined

M —number of clusters in the consensus partition σ

K —number of clusters in the partitions of the ensemble

�—chosen consensus function operating on cluster labels

p—sampling probabilities (initialized to 1/N for all the points)

Reference Partition← k-means(D)

for i = 1 to B

Draw a subsample Xi from D using sampling probabilities p

Cluster the sample Xi : π(i)← k-means (Xi )

Update the coassociation matrix

Re-label partition π(i) using the reference partition

Compute the consistency indices for the data points in D

Adjust the sampling probabilities p

end

Apply consensus function � to ensemble � to find the partition σ

Validate the target partition σ (optional)

return σ // consensus partition

Table 6 A summary of datasets
characteristics

No. of
classes

No. of
features

No. of
patterns

Patterns
per class

Star/Galaxy 2 14 4, 192 2082-2110

Wine 3 13 178 59-71-48

LON 2 6 227 64-163

Iris 3 4 150 50-50-50

3-Gaussian 3 2 300 50-100-150

Halfrings 2 2 400 100-300

2-Spirals 2 2 200 100-100

The LON dataset (Minaei-Bidgoli and Punch 2003) is extracted from the activity log in a
web-based course using an online educational system developed at Michigan State Univer-
sity (MSU): the Learning Online Network with Computer-Assisted Personalized Approach
(LON-CAPA1). The dataset includes the student and course information on an introductory
physics course (PHY183), collected during the spring semester 2002. This course included 12
homework sets with a total of 184 problems, all were completed online using LON-CAPA.
The dataset consists of 227 student records from one of the two groups: “Passed” for the
grades above 2.0, and “Failed” otherwise. Each sample contains 6 features.

The Iris dataset contains 150 samples in 3 classes of 50 samples each, where each class
refers to a type of iris plant. One class is linearly separable from the others, and each sample
has four continuous-valued features. The Star/Galaxy dataset described in Odewahn et al.
(1992) has a significantly larger number of samples (N = 4, 192) and features (d = 14). The

1 See http://www.lon-capa.org.
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Fig. 3 “Halfrings” dataset with 400 patterns (100-300 per class), “2-Spirals” dataset with 200 patterns (100-
100 per class)

task is to separate observed objects into stars or galaxies. Domain experts manually provided
true labels for these objects.

For all these datasets the number of clusters, and their assignments, are known. Therefore,
one can use the misassignment (error) rate of the final combined partition as a measure of
performance of clustering combination quality; however, it is obvious that the true labels of
data point can not be used in the clustering process. One can determine the error rate after
solving the correspondence problem between the labels of derived and known clusters. The
Hungarian method for solving the minimal weight bipartite matching problem can efficiently
solve this label correspondence problem.

5.2 The empirical results on non-adaptive approaches

The bootstrap experiments probe the accuracy of partition combination as a function of the
resolution of partitions (k value) and the number of partitions, B (number of partitions to be
aggregated).

One of our goals was to determine the satisfactory minimum number of bootstrap samples,
B, necessary to form high-quality combined cluster solutions. In addition, different values
of k in the k-means algorithm provide different levels of resolution for the partitions in the
combinations. We studied the dependency of the overall performance on the number of clus-
ters, k. In particular, clustering on the bootstrapped samples was performed for B values in
the range [5, 1,000] and the k values in the interval [2, 20].

Analogously, the size of the pseudosample, S, in subsampling experiments is another
important parameter. Our experiments were performed on different subsample sizes in the
interval [N /20, 3N /4], where N is the size of the original data set.In the case of the Halfrings,
S is taken in the range [20, 300] where the original sample size is N = 400, while in the case
of the Galaxy dataset, parameter S was varied in the range [200, 3,000] with N = 4,192.
Therefore, in resampling without replacement, we analyze how the clustering accuracy is
influenced by these three parameters: number of clusters, k, in every clustering, number of
drawn samples, B, and the sample size, S. Note that all the experiments are repeated 20 times
and the average error rate for 20 independent runs is reported, except for the Star/Galaxy
dataset where only 10 runs are carried out.
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Fig. 4 “Iris” dataset. Bootstrapping for fixed consensus function MCLA, different B, and different
values of k

The experiments employed eight different consensus functions: co-association based func-
tions (single link, average link, and complete link), hypergraph algorithms (HGPA, CSPA,
MCLA), as well as the QMI algorithm.

5.2.1 The role of consensus functions and algorithm’s parameters (bootstrap algorithm)

Perhaps the most important single design element of the combination algorithm is the choice
of a consensus function.

In the Halfrings dataset the true structure of the dataset (100% accuracy) was obtained
using co-association based consensus functions (both single and average link) in when k = 10
and the number of partitions took part in the combination was B · 100. None of the other six
consensus methods converged to an acceptable error rate for this dataset.

For the Wine dataset an optimal accuracy of 73% was obtained with both the hypergraph-
CSPA algorithm and co-association based method using average link (AL) with different
parameters as shown in Table 10. For the LON dataset the optimal accuracy of 79% was
achieved only by co-association-based (using the AL algorithm) consensus function. This
accuracy is comparable to the results of the k-NN classifier, multilayer perceptron, naïve
Bayes classifier, and some other algorithms when the “LON” dataset is classified in a super-
vised framework based on labeled patterns (Minaei-Bidgoli and Punch 2003).

For the “Iris” dataset, the hypergraph consensus function, HPGA algorithm led to the best
results when k · 10. The AL and the QMI algorithms also gave acceptable results, while the
single link and average link did not demonstrate a reasonable convergence. Figure 4 shows
that the optimal solution could not be found for the Iris dataset with k in the range [2, 5],
while the optimum was reached for k · 10 with only B · 10 partitions.

For the Star/Galaxy dataset the CSPA function (similarity based hypergraph algorithm)
could not be used due to its computational complexity because it has a quadratic complexity
in the number of patterns O(k N 2 B).

The HGPA function did not converge at all in any condition. Independent from the param-
eter values, k and B, the SL function did not also converge at all, as shown in Table 7, also you
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Fig. 5 The effect of different parameters over clustering performance on Star/Galaxy dataset. a Effect of par-
tition number on error rate of clustering using different consensus functions while K = 2. b Effect of partition
number on error rate of clustering using different consensus functions while K = 2. c Effect of cluster number
on error rate of clustering using different consensus functions while B = 100. d Determining the best value
of K applying different value of B

can refer to Figs. 6a, c for having a better view. Also, CL did not yield the optimal solutions.
However, the MCLA, the QMI and the AL functions led to an error rate of approximately
10%, which is better than the performance of an individual k-means result (21%).

The major problem in co-association based functions is that they are computationally
expensive. The complexity of these functions is very high (O(k N 2d2)) and therefore, it is
not effective to use the co-association based functions as a consensus function for the large
datasets.

Note that the QMI algorithm did not work well when the number of partitions exceeded
200, especially when the k value was large. This might be due to the fact that the core of
the QMI algorithm operates in k × B-dimensional space. The performance of the k-means
algorithm degrades considerably when B is large (>100) and, therefore, the QMI algorithm
should be used with smaller values of B.

The question of the best parameter setting is comparatively difficult to answer. As it is
inferred from Fig. 4, for higher values of k and B, we have better clustering results over Iris
dataset. According to this figure, we can claim that that in order to minimize the B value we
can follow the following rule of thumb: “assuming fixed value m (m is equal to two or three
times of real cluster number), the higher values of B will lead to the better results. But when
real cluster number isn’t defined previously B = 10 can be a good option”.

Also according to Fig. 5, we can deduce that in Star/Galaxy dataset results differ depend-
ing on employed consensus function. But like before, the greater value of B, the better results.
The best value of k in Star/Galaxy is k = 3. And also the best value of B over this dataset is
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Table 7 “Star/Galaxy” data experiments

K B QMI MCLA SL AL CL

2 5 18.5 19.4 49.7 49.7 49.7

2 10 18.7 18.8 49.6 49.6 49.6

2 20 18.5 18.9 49.6 24.4 49.7

2 50 18.7 18.8 49.6 18.8 49.7

2 100 18.8 18.8 49.7 18.8 18.8

3 5 13.4 15.5 49.7 49.7 49.7

3 10 17.8 15.6 49.6 49.6 49.6

3 20 11.5 15.3 49.7 18.8 42.9

3 50 13.3 15.4 49.7 11 35.9

3 100 11 15.4 49.7 11 48.2

4 5 15.2 13.1 49.7 49.7 49.7

4 10 11.4 14.5 49.6 49.7 49.7

4 20 14 13.7 49.6 24.3 48.7

4 50 22.2 11.9 49.7 10.7 48

4 100 11 11.9 49.7 10.7 47.9

5 5 14.9 13.8 49.7 49.7 49.7

5 10 14.9 13.1 49.7 47.9 49.6

5 20 10.7 13.4 49.6 11 49.7

5 50 11.4 13.4 49.7 10.8 48.7

5 100 11 12.5 49.7 10.9 48

Average error rate (% over 10 runs) of clustering combination using resampling algorithms with different
number of components in combination B, resolutions of components, k, and types of consensus functions
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Fig. 6 “Halfrings” dataset. Experiments using subsampling with k = 10 and B = 100, different consensus
function, and sample sizes S

123



Effects of resampling method 43

Fig. 7 “Star/Galaxy” dataset. Experiments using subsampling, with k = 3 and B = 100 and different
consensus function and sample sizes S

Table 8 The average error rate
(%) of classical clustering
algorithms

An average over 100 independent
runs is reported for the k-means
algorithms

Dataset k-means Single
link (%)

Complete
link (%)

Average
link (%)

Halfrings 25 24.3 14 5.3

Iris 15.1 32 16 9.3

Wine 30.2 56.7 32.6 42

LON 27 27.3 25.6 27.3

Star/Galaxy 21 49.7 44.1 49.7

B = 100. This matter is evaluated for four other datasets (Wine, Halfrings, 3Gaussian and
StarGalaxy) in Fig. 8.

The question of the best consensus function remains open for further study. Each con-
sensus function explores the structure of dataset in different ways, thus its efficiency greatly
depends on different types of existing structure in the dataset. One can suggest having several
consensus functions and then combining the consensus function results through maximizing
mutual information (Strehl and Ghosh 2003), but running different consensus functions on
large datasets would be computationally expensive.

5.2.2 Effect of the resampling method (bootstrap vs. subsampling)

In subsampling or bootstrap, with a smaller size of the S we face a lower complexity of the
k-means clustering. Therefore decreasing the size of data to be clustered can results in much
smaller complexity in the whole process of cluster ensembles. Comparing the results of the
bootstrap and the subsampling methods shows that when the bootstrap technique converges
to an optimal solution, the optimal result could be obtained by the subsampling as well,
but subsampling method rather bootstrap method needs a smaller size of the data points,
i.e. S. For example, in the Halfrings dataset the perfect clustering can be obtained using a
single-link consensus function with k = 10, B = 100 and S · 200 (50% data size) as shown
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Table 9 Summary of the best results of subsampling methods

Dataset Best consensus function (s) Lowest error
rate obtained
(%)

Parameters

Halfrings Co-association, SL 0 k · 10, B · 100

Co-association, AL 0 k · 15, B · 100

Iris Hypergraph-HGPA 2.7 k · 10, B · 20

Wine Hypergraph-CSPA 26.8 k · 10, B · 20

Co-association, AL 27.9 k · 4, B · 100

LON Co-association, CL 21.1 k · 4, B · 100

Galaxy/ Star Hypergraph-MCLA 9.5 k · 20, B · 10

Co-association, AL 10 k · 10, B · 100

Mutual Information 11 k · 3, B · 20

Table 10 Bootstrap methods: trade-off among the values of k, the number of partitions B, and the sample
size, S

Dataset Best consensus function (s) Lowest error rate (%) k B S % of entire data

Halfrings SL 0 10 100 300 75

SL 0 10 150 200 50

SL 0 10 400 80 20

AL 0 15 1000 80 20

AL 0 20 500 100 25

Iris HGPA 2.3 10 100 50 33

HGPA 2.1 15 50 50 33

Wine AL 27.5 4 50 100 56

HPGA 28 4 50 20 11

CSPA 27.5 10 20 50 28

LON CL 21.5 4 500 100 44

CSPA 21.3 4 100 100 44

Galaxy/Star MCLA 10.5 10 50 1500 36

MCLA 11.7 10 100 200 5

AL 11 10 100 500 12

AL 10.9 3 100 4192 100

Last column denote the percentage of sample size regarding the entire dataset. (Bold represents most optimal)

in Fig. 6. This perfect result can be achieved by k = 10, B = 150, and S · 200 (50% data
size) or k = 10, B = 100, and S · 300 (75% data size) according to the bootstrap results in
Table 10. Thus, there is a trade off between the number of partitions B and the sample size S.
This comparison shows that the subsampling method can be much faster than the bootstrap
(N = 400) in relation to the computational complexity.

The results of subsampling for “Star/Galaxy” dataset as given in Fig. 7, shows that at the
fixed resolution value of k = 3 and the fixed number of partitions B = 100, with mini-
mun sample size S = 1000 (24% of the entire data size) 89% accuracy is achivable. Note
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Fig. 8 Clustering accuracy for ensembles with adaptive and non-adaptive sampling mechanisms as a function
of ensemble size for some datasets and selected consensus functions

that this result is also achivable by the bootstrap method, but with a greater minimum sam-
ple size S, i.e. with entire dataset (100% of the entire data size) provided that k = 3 and
B = 100. It shows that for such a large dataset, a small fraction of data can be representative
of the entire dataset, and computationally this would be very interesting in distributed data
mining.

Note that in both the bootstrap and the subsampling algorithms all of the samples are drawn
independently, and thus the resampling process can be performed in parallel. Therefore, by
the B parallel processes, the computational process could be B times faster.

Table 8 shows the error rate of classical clustering algorithms, which are used in this
research. The error rates for the k-means algorithm were averaged over 100 runs, with random
initializations for the cluster centers, where the value of k was fixed to the true number of
clusters. One can compare it to the error rate of ensemble algorithms in Table 9.

The optimal size S and granularity of the component partitions derived by subsampling
are reported in Table 10. We see that the accuracy of the resampling method is very sim-
ilar to that of the bootstrap algorithm, as reported in Table 8. This level of accuracy was
reached with remarkably smaller sample sizes and much lower computational complexity!
The trade-off between the accuracy of the overall clustering combination and computational
effort for generating component partitions is shown in Table 10, where we compare accuracy
of consensus partitions. The most promising result is that only a small fraction of data (i.e., 12
or 5% for the “Star/Galaxy” dataset) is required to obtain the optimal solution of clustering,
both in terms of accuracy and computational time.
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5.3 Empirical study on adaptive approach

The experiments were conducted on artificial and real-world datasets (“Galaxy”, “half-rings”,
“wine”, “3-gaussian”, “Iris”, “LON”), with known cluster labels, to validate the accuracy
of consensus partition. A comparison of the proposed adaptive and previous non-adaptive
(Minaei-Bidgoli et al. 2004a) ensemble is the primary goal of the experiments. We evalu-
ated the performance of the clustering ensemble algorithms by matching the detected and
the known partitions of the datasets. The best possible matching of clusters provides a mea-
sure of performance expressed as the misassignment rate. To determine the clustering error,
one needs to solve the correspondence problem between the labels of known and derived
clusters. Again, the Hungarian algorithm was used for this purpose. The k-means algorithm
was used to generate the partitions of samples of size N drawn with replacement, similar to
bootstrap, albeit with dynamic sampling probability. Each experiment was repeated 20 times
and averaged numbers of misassignment patterns are shown in Fig. 8.

Consensus clustering was obtained by four different consensus functions: hypergraph-
based MCLA and CSPA algorithms (Strehl and Ghosh 2003), quadratic mutual information
(Topchy et al. 2003) and EM algorithm based on mixture model (Topchy et al. 2004a). Herein,
we report only the key findings. The main observation is that adaptive ensembles slightly out-
perform the regular sampling schemes on most benchmarks. Accuracy improvement depends
on the number of clusters in the ensemble partitions (k). Generally, the adaptive ensembles
were superior for values of k larger than the target number of clusters, M , by 1or 2. With
either too small or too large a value of k, the performance of adaptive ensembles was less
robust and occasionally worse than corresponding non-adaptive algorithms. A simple inspec-
tion of probability values always confirmed the expectation that points with large clustering,
uncertainty are drawn more frequently.

The most significant progress was detected when combination consisted of 25–75 par-
titions. Large numbers of partitions (B > 75) almost never led to further improvement in
clustering accuracy. Moreover, for B > 125 most of times we observed increased error rates
(except for the hypergraph-based consensus functions), due to the increase in complexity of
the consensus model and in the number of model parameters which they must be estimated
with trial and error method. Of course this matter is valid just for small datasets. It means
the larger number of data samples, the better adaptive ensembles than non-adaptive ones.
It can be due to the fact that with increasing k, in the final steps, the algorithm just selects
boundary data samples and lacks its generality. For “LON” and “Iris” datasets, the adaptive
method didn’t work so better than non-adaptive one that it isn’t reported here. The results of
adaptive method are always equal or better than the non-adaptive method. Even in the case of
“LON” and “Iris” datasets we face improvements, but little improvements. In all experiment,
with same B, S, k values and same consensus function, the adaptive method outperforms the
non-adaptive method, but in many cases this improvement is not considerable.

6 Concluding remarks

A new approach to combine partitions is proposed by resampling of original data. This study
showed that meaningful consensus partitions for the entire dataset of objects emerge from
clusterings of bootstrap and subsamples of small size. Empirical studies were conducted
on various simulated and real datasets for different consensus functions, number of parti-
tions in the combination and number of clusters in each component, for both bootstrap (with
replacement) and subsampling (without replacement). The results demonstrate that there is a
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trade-off between the number of clusters per component and the number of partitions, and the
sample size of each partition needed in order to perform the combination process converges
to an optimal error rate.

The bootstrap technique was recently applied in Dudoit and Fridlyand (2003), Fischer and
Buhmann (2003), Monti et al. (2003) to create diversity in clusterings ensemble. However,
our work extends the previous studies by using a more flexible subsampling algorithm for
ensemble generation. We also provided a detailed comparative study of several consensus
techniques. The challenging points of using resampling techniques for maintaining diversity
of partitions were discussed in this paper. We showed that there exists a critical fraction of
data such that the structure of entire dataset can be perfectly detected. Subsamples of small
sizes can reduce costs and measurement complexity for many explorative data mining tasks
with distributed sources of data.

We have extended clustering ensemble framework by adaptive data sampling mechanism
for generation of partitions. We dynamically update sampling probability to focus on more
uncertain and problematic points by on-the-fly computation of clustering consistency. Empir-
ical results demonstrate improved clustering accuracy and faster convergence as a function
of the number of partitions in the ensemble.

Further study of alternative resampling methods, such as the balanced (stratified) and
re-centered bootstrap methods are critical for more generalized and effective results.
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